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SST Lunch & Learn

 Introduction to SST

 Examples of use at Sandia

 Framework Overview

 Building a Simulator
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Why SST?

 Problem: Simulation is slow
 Tradeoff between accuracy and time to simulate

 Many simulators are serial, unable to simulate very large systems

 Problem: Lack of simulator flexibility
 Tightly-coupled simulations: faster but difficult to modify

 Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit: 

A parallel, discrete-event simulation framework 

focused on scalability and flexibility.
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SST Key Features

 Parallel
 Built from the ground up to be scalable
 Demonstrated scaling to 512+ processors, Millions of Components
 Supports both MPI and Thread-based parallelism

 Flexible
 Enables “mix and match” of simulation components
 Timescale agnostic (femtoseconds to years)
 Customize tradeoff between accuracy and simulation time

 E.g., cycle-accurate network with trace-driven endpoints

 Non-viral, Open Source license

 Mature, but active
 Version 5.1 Released in September, 2015
 Current SVN/git history back to 2009
 Over 117k SLOC  (Core alone: ~20k SLOC)
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SST Project Collaboration
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EXAMPLE USE CASES
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Case #1: Multi-level memory

SST Lunch & Learn:  September, 2015

 Future memory systems will be Multi-Level Memory

 MLM can potentially offer more “usable” bandwidth, less cost 

 Challenges:
 substantial software and hardware (co-)design

 no “one size fits all”

 SST can explore HW & SW organization

AMD Intel Marvell 6
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On package Memory Option

JEDEC std DRAM packaged for on-package use

Example – QDP die package

4 groups – custom POP stack

Energy - LPDDR style die (aggressive I/O power targets)

Proximity to main die to hold interface power down

8-die stack occupying remaining space of package



Analyzing Memory Accesses

 Capture post-cache accesses

 Setup:
 “Quads” of 4 cores

 Histogram generator 
implemented as a prefetcher
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l2SnoopParams = {
"prefetcher": "cassini.AddrHistogrammer",
"prefetcher.histo_bin_width": 4096,
"prefetcher.heap_begin": "1 GiB",
"prefetcher.heap_end": "9 GiB"

}
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Multi-Level Memory Simulation

 Multiple memory types:
 DDR DRAM (DramSim)

 HMC-like Stacked Memory (VaultSim)

 NVRAM (NVDIMMSim)

 Addresses can be interleaved, or 
blocked between memory types
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dc.addParams({
"addr_range_start": start_pos,
"addr_range_end":  end_pos,
"interleave_size": interleave_size/1024,    
"interleave_step": interleave_step,
"entry_cache_size": 128*1024, 
"clock": memclock,
"network_address": netPort

})

SST Lunch & Learn:  September, 2015

9



MLM Explorations

 Analysis of application 
memory use distribution

 Quick exploration of “Naïve” 
address assignment, capacity 
ratios on performance

 Not shown: Feedback results 
from histograms to determine 
address assignment
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Case #2: Network

 What is the network latency achieved by different platforms 
during a 3D halo exchange?
 Halo exchange: Exchange boundary data with neighbors

 Platform 1: “Fat” nodes – Eight 20TF/s cores per node

 Platform 2: “Medium” nodes – Two 20TF/s cores per node

 Platform 3: “Thin” nodes – One 10TF/s core per node

 Evaluate for 1K to 64K participating nodes

 Evaluate at three different link bandwidths
 12.5GB/s, 50GB/s, 125GB/s
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Network: Simulation setup

 Use Ember to model nodes
 Lightweight model focused on communication pattern

 Estimates compute time using the node’s FLOPS

 Detailed model of communication

 Enables scaling the simulated system to a larger number of nodes

 Compared to a detailed processor model + memory model

 Use Firefly to model the NIC 

 Use Merlin to model the network
 Detailed, cycle-accurate models for network (routers, links, etc.)

SST Lunch & Learn:  September, 2015

12



Scaling with Bandwidth
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SST CORE: FRAMEWORK FOR 
PARALLEL SIMULATION
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Key Concepts

 SST::Component

 Simulation model

 SST::Link

 Communication path between two components

 SST::Event

 A discrete event

 SST::SubComponent

 Add functionality to Components

 SST::Module

 Add functionality to framework

 Element Libraries

 Contain Components and Modules in a Shared 
Library format

 Included manifest documents components, 
features, parameters and interactions
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SST::Component
CPU

EventHandler

SST::Component
Cache

EventHandler

SST::Event
Load
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Component

 Basic building block of a simulation model
 E.g., processor, cache, network router, etc.

 Performs the actual simulation
 Zero Simulation time while operating
 Time advances on events

 Can send events to itself for timing purposes

 Events are issued on components
 Can register Clock Events
 Receive events over links

 Communicate with other components
 Components define ports, links connect ports between components
 Polled: Register a clock handler to poll the link
 Interrupt: Register an event handler to be called when an event arrives
 Both: Receive events on interrupt, send events on clock

 SubComponents and Modules provide additional functionality
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Link

 Connects two components
 Connect a specific “Port” on component A to a “Port” on component B

 The ONLY mechanism by which components communicate
 Necessary for parallel simulation

 Has a minimum, non-zero latency for communication
 Except self-links
 Except during initialization

 Transparently handles any MPI communication

Component A Component B
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Link 1

SST Lunch & Learn:  September, 2015

17



Event

 Unit of communication between two components
 Packet format is up to the communicating components

 Base class is SST::Event

 Has a delivery time
 Typically calculated from a link

 Can specify priorities.

 Some standardized interfaces
 Facilitate “mix and match” capability

 sst/core/interfaces/

 Memory (simpleMem)
 Defines commands & event format for communication with memory

 Network (simpleNetwork)
 Defines a header for events sent through a network component
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SST’s discrete-event algorithm

 Simulations are comprised of components connected by links

 Components interact by sending events over links

 Each link has a minimum latency

 Components can load subComponents and modules for 
additional functionality
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Simulation lifecycle

 Birth
 Create graph of components using Python configuration file

 Partition graph and assign components to parallel ranks

 Instantiate components

 Connect components via links

 Initialize components using their init() functions

 Setup components using their setup() functions

 Life
 Send events

 Synchronization between parallel ranks (hidden from user)

 Manage clock and event handlers

 Death
 Finalize components using their finish() functions

 Output statistics

 Cleanup simulation, delete components
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20



SST in parallel
 SST was designed from the ground up 

to enable scalable, parallel simulations
 Conservative, Distance-based 

Optimization strategy

 Components are distributed among 
MPI ranks and Threads

 Links enable parallelism
 Components only communicate via links

 Specified link-latency determines 
synchronization rate

 Transparently handle any MPI 
communication & thread synchronization

 Multiple partitioning strategies
 Linear, RR, “Simple”, Zoltan-based

 Simulation writer can provide own 
partitioning

MPI Rank 0

MPI Rank 0 MPI Rank 1

Thread 0Thread 0 Thread 1Thread 1

Comp0 Comp2

Thread 0Thread 0 Thread 1Thread 1

Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same configuration file
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SST FOR BUILDING SIMULATORS
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What makes a Simulator?

 Simulation Engine
 Handle events, communication between components

 Simulation Models
 Perform actual simulation / emulation

 System Construction
 Connect models together, configure the system to simulate

23

SST Lunch & Learn:  September, 2015

SST Core

Element Libraries

Python Module



SST as a Framework

 Framework Provides:
 Mature PDES Engine

 Serial or parallel (Multi-Thread and Multi-Rank)

 Optimizations for very large simulators

– “Sleeping” components

– Shared Memory Lookup Tables

– Memory Management

 API for building simulation components

 Manifests for documentation

 Utilities for common simulation challenges

– Parameters/Configuration, Statistics gathering, repeatable PRNG

 Python Module for building Simulators

 Configure Components and Links via Python scripts

 Supports embedding additional modules in Element Libraries

24
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Sandia-provided Models

 Processors

 Ariel – PIN-based

 Prospero – Trace-based

 Miranda – Pattern-based

 Memory

 MemHierarchy – Caches, 
“Main Memory”

 VaultSimC - Stacked memory 

 Cassini – Cache prefetchers

 Network driver

 Ember – Pattern-based

 Firefly – communication 
protocols

 Hermes  - MPI-like driver 
interface

 Zodiac – trace-based

 Network models

 Merlin – HPC Network 
simulator

 Other

 Scheduler

 simpleElementExample
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Building custom Components

 Create a C++ class which inherits from ‘SST::Component’
 Constructor:

 Will be passed an SST::Params object with configuration information

 Registers any clocks and their event handlers

 Configures links with event handlers

 Initialization phase:
 Can pass data to peers (pre-fill memory, establish global state)

 Run time:
 Respond to events (clocks, links)

 Simulate target model

 Send new events

 Record statistics

 Build an Element Library to describe this component (or group of 
components)

26
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Element libraries

 Collection of related components, subComponents, and 
modules

 Includes a manifest
 Declares how to create new component instances

 Documents Components, Parameters, Ports and Statistics

 Implemented as a Shared Library with a well-known symbol 
for the Manifest

 SST comes with many built-in libraries from Sandia
 Processors, memory, network, etc.

 Tested for inter-library compatibility
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Building a Simulator

 SST provides a Python Module 
with an API to connect and 
configure simulation components 
to build a simulator
 import sst

 At run time:
 sst ‘mySim.py’
 SST will launch Python interpreter, 

and execute ‘mySim.py’
 Script should instantiate all needed 

components, and provide their 
parameters

 Command-line arguments can be 
passed to the interpreter

 --model-options “-a -b 5”

 Normal python interpreter 
functionality available

 import getopt
 import antigravity

import sst

# Define the simulation components

comp_msgGen0 = sst.Component("msgGen0”,

"simpleElementExample.simpleMessageGeneratorComponent")

comp_msgGen0.addParams({

"outputinfo" : 0,

"sendcount" : 10000,

"clock" : "1MHz"

})

comp_msgGen1 = sst.Component("msgGen1”,

"simpleElementExample.simpleMessageGeneratorComponent")

comp_msgGen1.addParams({

"outputinfo" : 0,

"sendcount" : 100000,

"clock" : "1MHz"

})

myLink = sst.Link("myLink")

myLink.connect( (comp_msgGen0, "remoteComponent", "1us"),

(comp_msgGen1, "remoteComponent", "1us"))
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Python Module – Defining 
Components
 Define: sst.Component(“name”, “type”)

 Configure: addParams ({ “parameter” : value, … })

network = sst.Component(“router”, “merlin.hr_router”)
network.addParams({

“xbar_bw” : “51.2GB/s”,
“link_bw” : “25.6GB/s”,
“num_ports” : 4,
“flit_size” : “72B”
“topology” : “merlin.singlerouter”,
“id” : 0,
“input_buf_size” : “2KB”,
“output_buf_size” : “2KB”

})

Instance name Component type

Parameters
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Python Module – Defining Links

 Example: Connect an L2 cache (l2cache0) to network
 Create a link: sst.Link(“name”)

 Define link endpoints: connect(endpoint1, endpoint2)

 Endpoint is defined as: (Component, Port, Latency)

 Note: Latencies of the two endpoints can differ

…
l2cache0_network_link = sst.Link(“l2cache0_network_link”)
…
l2cache0_network_link.connect(

(l2cache0, “directory”, “500ps”),
(network, “port0”, “1ns”) )

…

Link name

Endpoints

SST Lunch & Learn:  September, 2015
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SSTInfo: Getting component info

 Prints parameters, port names, statistics, …

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”
================================================================================
ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT 0 = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32          

PARAMETER 0 = cache_frequency (Clock frequency with units. For L1s, this is 
usually the same as the CPU's frequency.) [REQUIRED]

…
PARAMETER 21 = network_bw (Network link bandwidth.) [1GB/s]
…

NUM PORTS = 4
…
PORT 3 [1 Valid Events] = directory (Network link port to directory)

VALID EVENT 0 = MemHierarchy.MemRtrEvent
…

NUM STATISTICS = 32

Optionally filter for a specific component

Parameter Definition

“REQUIRED” or 
default value

Port name

Definition

Type of event(s) used on the link
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Running SST

 Usage: sst [options] configFile.py

 Common options:
-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default: 
sst_output)

--add-lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple | 
rrobin | linear | lib.partitioner.name>

Specify the partitioning mechanism for parallel runs

--model-options “<args>” Command line arguments to send to the Python 
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in 
“Dot” format to <filename>
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Finally…

 SST Wiki:    http://www.sst-simulator.org/
 Downloading, installing, and running SST

 Element libraries and external components

 Guides for extending SST

 Information on APIs

 Information about current development efforts

 Mailing lists:
 sst-user: For questions on building, compiling, extending, and using SST  

 sst-developer: For questions on developing SST components

 sst-announce: Release announcements

 sst-commit: Notification of commits to the SVN repository

 Subscribe via the wiki

SST Lunch & Learn:  September, 2015
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THANK YOU
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Backup
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Ariel: PIN-based processor

 Lightweight processor core model 

 Uses Intel’s PIN tools and XED decoders to analyze binaries
 Runs x86, x86-64, SSE/AVX, etc. compiled binaries

 Supports fixed thread count parallelism (OpenMP, Qthreads, etc.)

 Passes information to virtual core in SST

 Implements SST’s memory interface to interact with a 
memory model
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Ariel: The tradeoff

 Pros:
 Faster than cycle-accurate processor models (e.g., Gem5)

 Reasonable approximation for studies on memory system 
performance

 Especially for heavily memory-bound applications

 Reasonable model of thread interactions

 Cons
 Slower than trace/pattern-based processor models

 Does not give cycle-reproducible results

 Use of threads can disturb reproducibility

 Non-deterministic results

 Not compatible with non-x86 binaries
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Ariel: Architecture

User Application
Binary

Ariel PIN Tool

…

(Instruction Stream
1 per thread)

…

Virtual “Ariel” Core

Virtual “Ariel” Processor

(memEvent Target)

SST Ariel Component

…

memHierarchy Cache
…

…

Unmodified user binary
(use your standard compiler etc)
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Ariel: Details

 Ariel’s virtual cores
 Instruction information currently limited to memory ops or instructions 

with no memory operands

 Clocked: Reads instruction stream in chunks but processes on clock

 Back pressure from FIFO halts real binary execution

 Does not maintain dependence order or register locations (yet)! 

 Performs a TLB mapping of virtual-to-physical addresses

 Key user knobs
 Memory ops issued/cycle

 Load/store queue size

 Memory interface
 Generates memEvents which can be sent to a cache model

 Tracks basic statistics (request counts, split-cache line loads, etc.)
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Prospero: Trace-based processor

 Trace-based processor model
 Reads memory ops from a file and passes to the simulated memory 

system

 “Single core” but can use multiple trace files to emulate threaded or 
MPI-style applications

 Supports arbitrary length reads to account for variable vector widths

 Performs “first touch” virtual to physical mapping

 Comes with Prospero Trace Tool to generate traces
 Or can generate your own and translate to Prospero’s format

SST Lunch & Learn:  September, 2015

40



Prospero: The tradeoff

 Pros
 Faster than Ariel and Gem5

 Provided you can get a trace

 Good for heavily memory-bound applications

 Reasonable approximation to memory system performance

 Cons
 Traces can be very large

 Requires good I/O system to store and read the trace

 Traces are less flexible than actual execution

 Capture a single execution stream using a single application input
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Miranda: Pattern-based processor

 Extremely light-weight processor model
 Generates specific memory address patterns

 Current patterns
 Strided accesses (single stream)

 Forward and reverse strides

 Random accesses

 GUPS

 STREAM benchmark

 In-order & out-of-order CPU

 3D stencil

 Sparse matrix vector multiply (SpMV)

 Copy (~array copy)
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Miranda: The tradeoffs

 Pros
 Very lightweight – no binary, no trace

 Good for applications whose address patterns are predictable

 E.g., not much pointer-chasing

 Cons
 Need a generator for the memory pattern of interest

 Requires a good understanding of the pattern
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MemHierarchy: Memory system

 Cycle-accurate cache and memory simulation
 Inter- and intra-socket coherence

 Multiple main memory models

 Highly configurable
 Can model any number of caches (L10s!)

 Arbitrary topologies, multiple memories

 Single- and multi-socket configurations

 Capable of modeling modern memory hierarchies
 Intel core i7, Xeon Phi

 Arm Cortex A8, A7, A15, A53, A57

 SPARC T6
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MemHierarchy: Components

 Cache
 Includes coherence protocols (MSI, MESI, etc.)

 Bus

 Directory controller
 Inter-socket coherence

 Memory controller
 Backs up simulated memory, interfaces with memory backends

 Memory backends
 Main memory simulators for DRAM, stacked DRAM, NVRAM, etc.

 TrivialCPU & StreamCPU
 Very simple memory request generators for testing
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MemHierarchy: Caches

 Store actual data

 Set associative, configurable replacement policies
 LRU, LFU, Random, MRU, NMRU (not MRU)

 Use MSHRs to buffer outstanding requests

 Can communicate via a direct link or over a bus or network
 Implements simpleNetwork interface via the “MemNIC” module

 Can model a single shared cache or multiple cache slices

 Handles atomics, LLSC, non-cacheable requests, etc.

 Prefetch capability by using the Cassini element library
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MemHierarchy: Cache structure

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in 

the MSHRs
• Manages cache allocations and 

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events 

• Forwarded requests, responses, etc. 
• Decides when events need to stall

MSHRs
• Buffers stalled 

and blocked 
events

CacheArray
• Stores cache lines –

data and coherence 
state

• Replacements via the 
replacement policy 
manager
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MemHierarchy: Main memory

 MemoryController
 Contains a ‘backing store’ for simulated data

 Can communicate over a network or via a direct link with a cache or 
directory

 Interfaces with multiple memory backends

 Available backends
 SimpleMem – basic read/write with associated latencies

 DRAMSim2 – DRAM (external)

 NVDIMMSim – Non-volatile memory (e.g., Flash) (external)

 HybridSim – non-volatile memory with a DRAM cache (external)

 VaultSimC – stacked DRAM
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Merlin: Network simulator

 Low-level, flexible networking components that can be used 
to simulate high-speed networks (machine level) or on-chip 
networks

 Capabilities
 High radix router model (hr_router)

 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy

 Lightweight network endpoint models (Ember – coming up next)

 Or, make your own
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Ember: Network traffic generator

 Light-weight endpoint for modeling network traffic
 Enables large-scale simulation of networks where detailed modeling 

of endpoints would be expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the patterns

 Generic method for users to extend SST with additional 
communication patterns

 Intended to be a driver for the Hermes, Firefly, and Merlin 
communication modeling stack
 Uses Hermes message API to create communications

 Abstracted from low-level, allowing modular reuse of additional 
hardware models
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Ember: Overview

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events
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Ember: Motifs

 Motifs are lightweight patterns of communication
 Tend to have very small state

 Extracted from parent applications

 Models as an MPI program (serial flow of control)

 Many motifs acting in the simulation create the parallel behavior

 Example motifs
 Halo exchanges (1, 2, and 3D)

 MPI collections – reductions, all-reduce, gather, barrier

 Communication sweeping (Sweep3D, LU, etc.)
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Ember: Motifs (continued)

 The EmberEngine creates and manages the motif
 Creates an event queue which the motif adds events to when probed

 The Engine executes the queued events in order, converting them to 
message semantic calls as needed

 When the queue is empty, the motif is probed again for events

 Events correspond to a specific action
 E.g., send, recv, allreduce, compute-for-a-period, wait, etc.
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Firefly: Network traffic

 Purpose: Create network traffic, based on application 
communication patterns, at large scale
 Enables testing the impact of network topologies and technologies on 

application communication at very large scale

 Scales to 1 million nodes

 Supports multiple “cores” per Node
 Interaction between cores limited to message passing

 Supports space sharing of the network
 Multiple “apps” running simultaneously
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Firefly: Simulating large networks 

 A network node consists of
 Driver (the “application”)

 NIC

 Router

 Nodes are connected together via 
the routers to form the network
 Fat tree, torus, etc.

 Firefly is the interface between the 
driver and the router
 Message passing library  Firefly 

Hades

 NIC  Firefly NIC

Ember
(driver)

Firefly Hades

Firefly NIC

Merlin Router
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Scheduler

 Models HPC system-wide job scheduling

 Three components
 Sched: schedules and allocates resources for a stream of jobs

 Node: runs scheduled jobs on their allocated resources

 FaultInjection: injects failures onto the resources

 The scheduler is currently a stand-alone element library
 The schedComponent and nodeComponent must be used together

 The faultInjectionComponent is optional
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